

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Group No - 112 Prediction and Optimization of Parameter in Wire EDM of SS316L

Akash Gurav, Sagar Diddi, Gaurav Ande, Darshan kudtarkar Prof, R.Sewane Department of Mechanical, SKNCOE, SPPU, Pune

Abstract-Wire EDM is a non-conventional machining process which has high accuracy and precision with low surface roughness. Whereas conventional machining process cannot achieve the target of low surface roughness. Conventional machining process will distort the material when thickness increases. To determine optimum parameters of wire edm. These optimum parameters will be the one which will give the lowest surface roughness for the cut.

Keywords— EDM(Electrical discharge machining), SS316(Stainless Steel 316), SVM (Support Vector Machine)

I.INTRODUCTION

SS316L stainless steel is being widely used in orthopedic implants, dental implant and cardiovascular stents in biomedical and engineering applications In the recent years many attempts have been made to improve the surface properties of metals and alloys used in bio medical applicationsWire EDM is one of the most extensively used non- conventional material removal process as it provides an effective solution for machining of hard materials with complex shapes.The methods of optimization are gray wolf, And ColonyGenetic Algorithms particle swarm, cuckoo search, Teaching Learning Based Optimization (TLBO) etcWe will be predicting the surface roughness by using machine learning modelThe models for prediction are liner regression, ANNKNN, random forest, SVM (Support Vector Machine), Decision tree etc.

LITERATURE REVIEW

	End II of the relief			
S.r	Authors	Title of Paper	Methodology	Outcome
1	John Kechagias	Optimization of cut surfac	eOptimization by using	Analysis of means and analysis
	etal.	quality during CNC Plasm	aANOMAand ANOVA	of variances show that all
		Arc Cutting process	Analysis	parameters
				affect about equal the surface
				roughness of the cut surface.
2	Sahil Sharma et	xperimental Analysis an	dThe aim of this paper wa	The comparison between
	al.	Optimization of Proces	ssto investigate the effect o	fpredicted value and the
		Parameters in Plasma Ai	cmachining parameters of	confirmation test result value
		Cutting Machine of EN-45.	AMRR and to obtain th	eshows an improvement of
		Material Using Taguchi an	doptimal conditions fo	r4.04% in the MRR, which
		ANOVAMethod	maximizing the response	eindicates that the experiments
			variable, i.e. MRR in PAC	in this study possess excellent
			of EN4SA steel using	repetitiveness and has a great
			Taguchi OA with ANOVA	potential
			method.	
3	P.P. Badgujar and	Analysis Of Surfac	eOVAT analysis is ver	Through this analysis it is
	M. G. Rathi	Roughness In Abrasiv	emuch important too	concluded that the higher
		Waterjet Cutting C	futilized widely in	stand-off distances result in a
		Stainless Steel	engineering analysis. Thi	sconstant increase in the surface
			work is a part of ongoing	proughness. In case of the water
			research project and th	epressure, higher water pressure
			preliminary results ar	increases the kinetic energy of
			presented in this articl	the individual particles Inside
				the jet and enhances their
				capability for the material
				removal. Surface roughness
				decrease
				accrease
L				I

Wire EDM machining (Electrical Discharge Machining) is an electro thermal production process where a thin single strand metal wire, along with de-ionised water (used to conduct electricity) allows the wire to cut through metal by the use of heatfrom electrical sparks, while preventing rust

Fig. 1 Working Principle of WEDM

Wire EDM machining works by creating an electrical discharge between the wire of the electrode and the work piece As the spark jumps across the gap, material is then removed from the work piece and the clectrode. Due to the inherent properties of the process, Wire EDM can easily machine complex parts and precision components out of hard conductive materials.

n Methodology SELECTION OF MATERIAL SELECTION OF MACHINE MATERIAL PURCHASE DESING OF EXPERIMENT BY USING R5M MACHINING PREDICTION (A)BY USING R5M EQUATION (B)BY USING ANN REGRESSION

IV.Implementation Methodology

© 2023 JETIR May 2023, Volume 10, Issue 5

Experimental layout

Fig.no -2 Experimental layout

Future Scope

The prediction model we created using ANN Regression can be further used for future purpose with different dataWe also used Surface Roughness equation for prediction which we got by using the RSM statistical method that equation can also be used for prediction in future but for that we required same input parameters with different levels or valuesWe know that our aim is to minimize the surface roughness and to find optimum parameters of WIRE EDM which will give lower Surface RoughnessFor optimization we used TLBO algorithm which has given three optimum combination which will give minimum surface roughnessIn future if anyone wants to work on the SS316L and wants to achieve minimum surface roughness he can used our optimum parameters which we got with the help of TLBO.

Conclusion

We predicted surface roughness by two methods. First we predicted the surface roughness by using the RSM equation of surface roughness, that was the manual method. to predict the surface roughness but, for more efficient results we also used ANN regression model.That model can be used in future for prediction with different data. After doing the prediction by both ways we compared both the methods and conclude that the ANN Regression model is performing better than our manual prediction method which we have done by using RSM equation -

• ANN Regression given the error up to 0.224 and our manual prediction given error up to 0.9021Sowe can conclude that ANN regression is best model and we can used it for 6.future purposeBut both the errors we got are acceptable.

www.jetir.org (ISSN-2349-5162)

IX. Parameters considered for this project

IX. II Experimental Layout Process Parameters

Process Parameters	Levels		
	-1	0	1
Pulse on Time (Ton)	112	114	116
Pulse off Time (Toff)	54	56	58
Spark gap Voltage (V)	10	20	10
Peak Current (IP)	110	230	110

XI. References

- [1] S.V. Alagarsamy, M. Ravichandran, S. Vignesh, S.A.V. Sagayaraj, Multiperformance optimization of wire cut EDM process parameters on surface roughness of AA7075/B4Cp metal matrix composites, Magnesium, 2, 2–9.
- [2] S. Gijoy, S.S. Abhilash, S. Hari Krishnan, Optimization of wire electrical discharge machining process parameters using Taguchi method, Int. J. Curr. Eng. Sci. Res. (IJCESR) 4 (7) (2017).
- [3] Bijo Mathew, B.A. Benkim, J. Babu, Multiple process parameter optimization of WEDM on AISI304 using utility approach, Procedia Mater. Sci. 5 (2014) 1863–1872.
- [4] Johnson Jerin, K.T. Bibin, Anoop Sankar, Optimization of wire electric discharge machining parameters on Al 6061, Int. J. Eng. Sci. Res. Technol. (2018).
- [5] N.E. Arun Kumar, Suresh Babu, Murali, A study on parametric optimization of wire electrical discharge machining using response surface methodology, t 1051-1059issn 0972-768x J. Chem. Sci. 14 (2) (2016)
- [6] K.R. Padmavathi, S. Devaraj, I. John Solomon, A. Premkumar, Influence of process parameters on wire EDM process for AISI 316 stainless steel, Int. J. Eng. Res. Technol. (IJERT) 6 (02) (2018), Special Issue.
- [7] M. Kumar, H. Singh, Multi response optimization in wire electrical discharge machining of Inconel X-750 using Taguchi's technique and greyrelational analysis, Cogent Eng. 3 (1) (2016) 1266123.

